
dyn.com 150 Dow Street, Manchester, NH 03101 USA @dyn603 668 4998 dyn.com 150 Dow Street, Manchester, NH 03101 USA @dyn603 668 4998

Ebook:

DNS
FUNDAMENTALS
From a Technical Perspective

dyn.com @dynpage 2

Introduction:
Understanding fundamental Domain Name System (DNS) concepts is a
critical part of your understanding of how the internet works. DNS is the
mechanism that helps find the network endpoint that you’re trying to
reach. This paper will cover basic DNS terminology, in general terms,
with nothing vendor-specific or proprietary. There are many opinions on
this subject, so this paper will lay out multiple points of view, wherever
possible. The goal is to provide a good representation of all these terms
and how they function in the real world.

DNS Fundamentals
From a Technical Perspective

https://dyn.com/blog/dns-why-its-important-how-it-works/

@dyndyn.compage 3

Global DNS
Let’s begin by defining the actors on the stage. The DNS can really be
broken down from a request perspective: There are authoritative servers,
and there are things that talk to those authoritative servers. Often, the
things that talk to the authoritative servers are doing it on behalf of
someone else, which are “stubs.” As we’ll discuss later, there are a number
of things you can be authoritative for.

This can’t possibly be repeated enough: users are our eyeballs on the
edge of the internet accessing internet resources. Whenever we hit a URL
like http://www.dyn.com/blog, our devices parse it out into multiple parts.

Your browser first uses DNS to look up the target hostname’s IP address
(or the URL may have an IP-literal hostname that directly specifies an IP
address, skipping DNS altogether). The URL has some distinct parts. The
beginning is the scheme. In general terms, it says which protocol is in use
(in this case, http).

After the two slashes comes some network location information, which
is almost always an Internet host expressed as a domain name that can
be looked up in the DNS. In our example, this is www.dyn.com. There
are other kinds of information that can be here, too, but a domain name
is most common. After another slash comes the path (in this case, blog)
which says where the desired resource is found on the host. To get to the
blog, you must know how to find the host on the internet. This is where
the DNS comes in, using a process called name resolution.

Ebook | DNS Fundamentals

https://blogs.msdn.microsoft.com/ieinternals/2012/09/26/braindump-dns/
http://www.dyn.com

@dyndyn.compage 4

Ebook | DNS Fundamentals

How a Request Is Resolved
Most of the time, when you resolve a name on the Internet, you are
working on an endpoint—your phone, tablet, laptop, or some other
device. On that device you usually find a minimal resolver called a
stub resolver (often, just “stub”). It’s called a stub because it can’t do
very much. It knows it needs an answer to a question about a domain
name. So, it asks something else: it sends its resolution requests to
another service on the network, called a recursive resolver.

For most of the world, the default designated recursive resolver
(often just “recursive”) is a server provided by the local internet
service provider (ISP) or the business maintaining the network. The
job of the recursive is to make requests to the larger DNS ecosystem
on behalf of the user, allowing for economies of scale and freeing
up resources for the user. Ultimately, the recursive will ask a series
of DNS servers that are authoritative for components of the DNS in
order to process the request and hand back to the user the IP of the
DNS name that was requested. It looks broadly like this:

When the recursive is interacting with the DNS, it is navigating the
largest distributed database in the world. The DNS is formatted in
a large tree structure. Each node has a label, which is zero to 63
octets in length.

Like any tree structure it has a beginning known as root. If we
go back to our www.dyn.com example, the actual real host has
a usually unrepresented “.” at the end - www.dyn.com. - which
represents the root zone.

Example.com?

1.1.1.1

Example.com?

1.1.1.1

RecursivesUsers Authoritative

The recursive will check its cache left to right (do I have www.
dyn.com? Dyn.com? Com?). However, if it doesn’t have any of
the answers in cache, the recursive goes to the root to get things
started. The idea of the root is to provide an origin to the query,
providing the nameservers for all the top-level domains (TLD)
such as com, net, fr, edu, and others. The root then delegates the
authority for the namespace of that name to the authoritative DNS
of an organization designated to run that TLD independently. This
process is intuitively called a delegation.

TLDs come in a couple varieties. First, they can be run for a country
(like .fr for France and .sg for Singapore), and these are called
ccTLDs. They can also be generic like .com or .net. These are called
gTLDs. Lastly, there is a variation of gTLD, which is wholly owned
and operated by an organization as though it were a normal domain
like .nike. These are called colloquially “.brand” TLDs, even though
they are just commercially special TLDs.

Sometimes, TLDs will divide up their namespace a little further
before allowing names to be individually registered, such as
breaking out edu.sg, co.uk, or gov.il. These are called Second Level
Domains, or SLDs. It’s important to remember that there is no real
technical difference between any “level” of domain name—they
all work the same way. But there are administrative and policy
differences at the root and in the TLDs and SLDs, which is why they
have special names.

@dyndyn.compage 5

Registering a Domain and Creating a Zone
Most TLDs are commercially operated, and lease off portions of their
namespace for private operation. The group that maintains a TLD is
known as a Registry, while the authorized resellers of those names are
Registrars. Therefore, when you go to the Dyn website and register
wacky-awesome-cats.info, you are interacting with a registrar for the
.info registry.

When you register a domain, a few things happen. You register the
domain, which designates the DNS namespace of that domain—and
all its children—to you. This may initiate the process to create a DNS
zone, a unit of DNS administration. The registration of the name, if
it’s permitted, creates an allocation of that name space. But there’s
no requirement to add nameservers. And if you don’t, you have a
name without a delegation. If you add at least two nameservers—and
assuming everything else is ok—you have a delegation (that is, a pointer
in the parent zone to your nameservers).

If those nameservers are not responding authoritatively, then the
delegation is lame. If they respond authoritatively and have an
appropriate start of authority (SOA) record, then you have a proper
delegation and a new zone.

The zone is fully established when a SOA record is created at the
location the nameservers designated in the registration. This registered
domain can spawn multiple zones within the total namespace, but there
can be only one zone at the delegated name.

That is, if .com delegates example.com, there can only be one example.
com zone. example.com could further delegate, to a.example.com and
b.example.com, by adding nameserver entries at those names. But that’s
not at the registered domain—but at a different domain (a.example.
com, for instance). And the operator might not even be different for
these different zones—you can delegate something to yourself (that is,
to another nameserver that you control).

Ebook | DNS Fundamentals

@dyndyn.compage 6

Ebook | DNS Fundamentals

When you register that domain, one of the things the registrar will ask is
which DNS servers will act as the authority for your domain. This acts to
delegate the authority of your domain to your own authoritative DNS
servers, exactly as the root delegated the TLDs above. Do you sense a
pattern? It’s “turtles on turtles” all the way down. But, it can get a little
confusing, because all of these things are called domain names and
are delegated, so it is not always clear whether two domain names are
under the control of the same operator.

Let’s review before we get into the terms used to manage a zone at a
DNS provider on a day-to-day basis. We registered a domain, which
created a zone, via a registrar, acting for a registry of a TLD, which is
a division of the DNS namespace below the root, through a process
of delegations—all in order to provide answers to users through their
recursives to our domain authoritative DNS.

What’s in a Zone?
So far, everything has been largely behind the scenes and broadly
consistent across the industry. It’s really when things start being
presented to users themselves that terminology starts to get squirrelly.
The terminology used by implementers and developers of DNS
protocols, and by operators of DNS systems, has changed in the
decades since the DNS was first defined.

For the next set of terms, we should build a zone with just a few of the
normal records we use on a day-to-day basis. Records are formally called
Resource Records (RR), which are those individual entries in the zone.

If you’re just starting to become familiar with DNS, you may notice that
different types of RRs have different kinds of data: we have IPs (A for
IPv4 and AAAA for IPv6) for things like webservers for the blog and
APIs, mail servers; Mail Exchanger (MX) record for inbound mail; and a
Service Record (SRV) for Voice over IP (VoIP).

The terms for various portions of the individual record are not too
controversial. Each string between the dividing dots (www, example,
com) are known as labels. The labels together form a DNS name that

specifies the exact location (www.example.com.) in the DNS tree
where a particular record can be found. This is often called the
“name” of the record or a “host” in various DNS portals, but it is
more properly called a domain name.

The next value is the Time to Live (TTL), which is the maximum value
the record should be held in cache before a new query occurs. The
record type lets us specify what kind of data goes in the record: some
take IP addresses, some take domain names, one can take arbitrary
text (TXT), and so on.

Not represented in a standard BIND zone file is the record class,
which is nearly always IN for internet. There is also an option for CH
for Chaos network, but is only really used by us DNS personnel to
query DNS server information. Lastly, we have the meat of the record
known variously as RDATA for Resource Data, Value, or sometimes,
target. A group of all the records of a particular type with the same
name and class exist as an RRset.

Some of the specific terms used to describe a scope for any
location within the DNS tree are contentiously debated, both across
organizations and within them. If the description below doesn’t match
what you might be used to. we will try to provide some context for
the discrepancy.

The first is the location at the very top of that zone - the apex,
represented by the @ symbol in our zone file, with the SOA record
designating the Start of Authority (SOA) for the new zone with
information on how to handle that zone in certain scenarios. The apex
of a zone is the name of the location (“node”) where the SOA record
is located. There is always at least one nameserver record at this
location, too. If the zone name was example.com, then the apex of
that zone is also example.com, which may hold important records like
TXT or MX for email functionality.

While this is sometimes called “the root of the zone,” this should be
discouraged, if possible. The root is a specific location at the root of
all DNS names. If you think about it, it’s as if you referred to the home

https://xkcd.com/1416/

@dyndyn.compage 7

directory on your computer as “root.” People wouldn’t know if you meant that
location or actual root. That term is taken, and we have one for this concept,
the apex.

Everywhere there is an SOA record, that is also an apex in the DNS distributed
database. Domains can have “subdomains”: that is just the relationship
between two names. For instance, the example.com domain can have a
subdomain, a.example.com. Also, example.com is a subdomain of com, and
they’re all subdomains of the root zone.

Every domain name might have several resource records RRsets: SOA if the
name is an apex, NS, A, AAAA, MX, TXT, or other types. And the example.
com zone might also have subdomains in it, because not every subdomain is a
delegation. So, in the example.com zone file, you might find entries for a.long.
domain.name.example.com.

Therefore, there might be an entry for www.example.com, for instance, that is
not an nameserver (NS) record. If so, then that’s not a delegation, and it’s in the
example.com zone even though it is a subdomain.

The next attempt uses Fully Qualified Domain Name (FQDN) to refer to the
entire string of labels with all parts. This is reasonably good, but there is an
issue with the full qualification. A true FQDN must include all labels right down
to the trailing root (www.example.com.). But on a day-to-day basis, most of us
will present a domain name without the trailing dot (www.example.com). Does
a FQDN include situations when the trailing dot is excluded? We find ourselves
in a situation where many outside the DNS sphere haven’t heard the term, but
DNS experts are stuck wondering if it really is or isn’t qualified.

The other major term is hostname or host name; both mean the same thing.
As RFC 7719 points out, the DNS was born out of the use of host tables, so it
is likely this term has existed since nearly the beginning and is in common use.
There is a flaw, however. Technically speaking, not all FQDNs can be hostnames.
Host names are only allowed to contain letters a-z (or A-Z), digits 0-9, and the
hyphen. Domain names, on the other hand, can have special characters such as
the underscores for _udp and _sip for our SRV record. There is a set of rules—
discussed in detail in RFC 7719—for what may be a hostname.

Ebook | DNS Fundamentals

@dyndyn.compage 8

Ebook | DNS Fundamentals

DNS Delegation
So far we have covered the major components of a single zone and
zone file, but the DNS is actually a series of delegations: the root
. zone to the .com zone to the .example.com zone. How do those
zones link together? This is done by that process mentioned earlier,
delegation, in which one zone points the authority to the next in
the chain. The process for dyn.com looks like this using my own
computer through Google DNS:

Google initially knows the names of the root nameservers because
they are hard-coded into the hints file. Otherwise, how do you know
where to start? The root zone looks at the request for dyn.com. and
notices that it is in the com namespace. There is a label for com in
the root zone, with 13 nameservers as NS records. The nameserver
records found in the zone performing the delegation (root in this
case) are known as the parent nameservers of the delegation. The
inclusion of these nameservers at this spot indicates the answer to
this query is not on the current nameserver or zone, and the resolver
should try the ones provided.

This produces a zone cut to a new zone within the new delegated
zone. At the location of those 13 nameservers, there is a zone file
for the domain of com, with a Start of Authority (SOA) record so
indicating. Along with the SOA, there are 13 nameservers in the
apex of the com zone signaling that you are in the right place. These
are known as the child nameservers of the delegation. The recursive
follows this process, again and again, until it gets to the authoritative
for the DNS name in question and “voila!” gets the answer.

For this example, the domain name is delegated to a nameserver
that is a different domain entirely, but sometimes domain operators
will choose to have the domain delegated to a nameserver within the
zone itself. This is known as being in bailiwick and would look like
example.com being delegated to a nameserver ns1.example.com.
How did we get the IP of the original nameserver to ask the question
in the first place!?

We have created a version of the bootstrap paradox. How do we
get around it? Nameservers are able to pass on information in a
DNS request such as the authority section to provide information
on which nameserver is currently responding, as well as an additional
section to provide more information on the answer.

https://dyn.com/blog/recursive-dns-round-trip-times-delegations-dns-performance/
https://www.youtube.com/watch?v=u4SEDzynMiQ

@dyndyn.compage 9

In the case of nameservers, the additional section contains the IP addresses
of the nameservers, to be used for the initial lookup—breaking the paradox.
These are glue records, and they must be in the parent zone file.

Let’s look at an example using ns1.example.com as a name server for
example.com then the com zone has an NS record “example.com NS ns1.
example.com,” and a glue record “ns1.example.com A 192.0.2.1”

It’s true that, in most top-level domains (TLDs), just like everything else that
goes into the registry’s zone, the glue records must be added by
your registrar.

It is interesting to note that some recursives will prefer the parent NS
records for nameserver selection, others will prefer to query the child
nameservers for the child NS record, and still others will use the authority
section within a DNS response handed out by those child nameservers.

There could be differences in TTLs between the parent and child NS
records, and even the number and content of the records themselves if
you misconfigured them, or have a lame delegation in which one of the
nameservers in delegation doesn’t respond to queries.

It is, therefore, highly advisable that your parent and child nameservers
match on both sides of the delegation, with all nameservers correctly
responding. Of course, sometimes they can be different, in order to allow
you to change nameservers. But, as a general rule, they should be the same.

If you look at the example above, you will see the last two sections are
almost identical, with a small but noticeable difference. “Matching RRsets”
means: the algorithm in DNS doesn’t compare TTLs when looking for a
match. It just looks at name, class, and type.

This parent NS TTL set by the parent (including the TLD nameservers)
within the parent zone, and there is nothing a child domain operator can
do about it.

Ebook | DNS Fundamentals

@dyndyn.compage 10

DNS Administration
We have a zone on a single provider with our answers. What happens if that
provider has a problem? A very common topic is that of multiple provider
DNS configurations. While the specifics have been covered in depth in a
different piece, the terms related to that process belong here.

In order to have multiple providers, the zone files between them must
be in sync, as any nameserver in the delegation might receive the traffic.
Historically, this has been performed by a process of a Master DNS server
which handles zone file management updating a Secondary DNS server.
Today this is performed by letting the secondary know there is an update via
a NOTIFY which activates the secondary to compare the serial value in the
SOA record which designates the version of the zone.

If the master serial is higher, it is time to update. The secondary may initiate
an IXFR to get the changes that have occurred between those two serials,
or will perform an AXFR for the whole zone in cases where the number of
changes is too large or this is the first time loading the zone, or if it does not
support IXFR. Because this update process is a sensitive one, a Transaction
Signature (TSIG) can be used to ensure the master DNS server really is who
it says it is by way of a symmetric key verification.

Nameserver Selection and Announcement
From the perspective of the recursive, all of this is hidden. The only thing
the recursive will see is a list of nameservers handed out by the parent
delegation. Whatever relationship those nameservers have is completely lost.
If that’s not how the resolver chooses which nameserver to send traffic to,
how does traffic get there?

To start the process off, if the resolver is just getting the delegation for
the first time it will merely pick one randomly and send the first query off.
After that, it might continue using that same name server. To improve
performance, however, it may then mark down the Round Trip Time (RTT)
– the time between when the query was sent until the reply was received.

Ebook | DNS Fundamentals

@dyndyn.compage 11

Ebook | DNS Fundamentals

It may then send the next query to one of the other unknown
nameservers and repeat the process until all the known
nameservers have a round trip time associated with them.

Many resolvers will then use these times to send more traffic to
the fastest nameserver. This is called nameserver affinity, or a
preference for some NS over the others. This accelerates responses
for users and reduces some process time for the resolver. In order
to adapt to changes, resolvers will periodically test the nameservers
that responded more slowly to see if an improvement has occurred.

That is how the resolver chose which nameserver to go to, but
how did the resolver get to the DNS server itself? While this lies
in network engineering, there are two terms which are important
to DNS itself. One way of operating a network is to have a one-
to-one relationship in the number of servers to nameservers, and
announce these like any other address. This is what is called a
unicast announcement strategy.

This can present problems however. As we mentioned above, the
resolvers are going to try every NS—including those which might
be on the other side of the world. Furthermore, an attacker could
deliberately target a nameserver because the IP maps to a single
location. To combat this, network engineers use a technique called
anycast, in which the routes to a single IP for a nameserver are
announced from many locations on a regional or global network
leading to greater performance and reliability. For modern DNS
providers, this has largely become a standard practice.

With an anycast addressing scheme, multiple endpoints can share
the same IP address. With dynamic routing, traffic is then steered
to the network endpoint that is closest. RFC 4786, Section 2,
discusses anycast in some detail for those who have a desire to do
a deeper dive in this area.

DNSSEC
As more actors began to use the internet, malicious parties began
to take advantage of its open nature. To ensure the fastest possible
response, DNS uses UDP packets, rather than establishing a TCP
connection. While there is a gain in speed, it is also easier to spoof
the packet address. Additionally, resolvers historically used the
first response to come in. These features combined to establish an
environment in which the DNS lacked security. If you are going to
yourbank.com, you really want it to be the right location, right?

DNS Security Extensions (DNSSEC) provide a framework to
establish the integrity of answers received from the DNS. It does
this in a way compatible with caches, but offering a Chain of Trust
within the DNS tree, with each parent providing a signed hash of a
key to verify the delegated child’s key. The chain of trust starts at
the very top with Root, then goes to the TLDs, and so on. Within
a zone, the private Zone Signing Key (ZSK) signs each RRset for
that zone, and publicly stores a Resource Record Digital Signature
(RRSIG) record with each. This is combined with the public portion
of the ZSK, held as a DNSKEY record which when all together
allows a resolver to verify the record itself.

To verify the ZSK is valid, it itself is signed with a Key Signing Key
(KSK) which creates a DNSKEY RRSIG. Of course, it needs a public
DNSKEY again. But how do you verify the KSK in the first place? To
prevent this from going on forever, DNSSEC uses that chain of trust
mentioned earlier.

Rather than put the public KSK on the actual zone alongside
the ZSK, it is hashed into a Delegation Signer (DS) record and
provided to the parent of that domain. So the TLD hands out the
DS records which you can use to verify the KSK which you then can
use to verify the ZSK which can verify the Record. Of course, the
TLD must be verified, so it has a series of RRsets, ZSKs and KSKs up
to Root, which itself is signed. Because you are now at the root of
the tree, there is nowhere else to go.

@dyndyn.compage 12

Ebook | DNS Fundamentals

Each resolver around the world is configured to point to an initial trust anchor of
the Root public KSK. The private Root KSK is used to sign the Root RRSIG of the
DNSKEY RRset. Because this signing process is so critical to the security of the
DNS, no single individual, organization, or nation was trusted to perform
the signing.

Instead the signing actually occurs in person, in an elaborate key signing
ceremony. Interestingly, the KSK itself has stayed the same since it was first used
in 2010. The KSK was supposed to be rolled over in October 2017, but has been
postponed because there were indications that a “significant number” of resolvers
are not ready. So stay tuned for 2018 updates.

But wait! There’s more! Another way in which malicious actors may spoof a zone
is to pretend to have access to a host that doesn’t exist within a zone. In this
scenario, the response will be the absence of a record, not an explicit declaration
that the record doesn’t exist. This has been documented as a method for spoofing.

To combat this, NSEC records which point to the next valid host were created,
thereby proving the lack of existence of anything in between. The problem there is
that it becomes possible to walk the zone and know everything which does exist.
While DNS is public information, and private information shouldn’t be published in
the first place, this worried people enough to create NSEC3 records which change
this into a hash. There is even a proposal for NSEC5 which likely works by wizardry
and unicorn dust alone. As we’ve seen, DNSSEC isn’t easy.

Wrapping It Up
This paper’s goal was to provide the information needed to help you better
understand how all these pieces fit together. If you have questions as you find
yourself staring down a long block of DNS, contact Dyn. We will be happy to help.

If you are interested in reading more, here is a list of all the DNS Requests for
Comment (RFC) at the Internet Systems Consortium (ISC) who write BIND, the
most widely used DNS software on the internet. For DNS terminology specifics,
RFC 7719 has the definitive list. And if you’re interested in learning more about
why it’s time to rethink DNS, visit dyn.com/dns.

https://www.theguardian.com/technology/2014/feb/28/seven-people-keys-worldwide-internet-security-web
https://www.theguardian.com/technology/2014/feb/28/seven-people-keys-worldwide-internet-security-web
http://pages.dyn.com/PPC_DNS_ContactUs.html?utm_source=blog&utm_campaign=ABCs_%20TLAs_DNS
https://www.isc.org/community/rfcs/dns/
https://www.theguardian.com/technology/2014/feb/28/seven-people-keys-worldwide-internet-security-web
http://dyn.com/dns

Rethink
DNS.

dyn.com 150 Dow Street, Manchester, NH 03101 USA @dyn603 668 4998 dyn.com 150 Dow Street, Manchester, NH 03101 USA @dyn603 668 4998

Oracle Dyn is global business unit (GBU) focused on critical cloud infrastructure.
Dyn is a pioneer in DNS and a leader in cloud-based infrastructure that
connects users with digital content and experiences across a global internet.
Dyn’s solution is powered by a global network that drives 40 billion traffic
optimization decisions daily for more than 3,500 enterprise customers,
including preeminent digital brands such as Netflix, Twitter, LinkedIn and
CNBC. Adding Dyn’s best-in-class DNS and email services extend the Oracle
cloud computing platform and provides enterprise customers with a one-stop
shop for infrastructure as a service (IaaS) and platform as a service (PaaS).
Copyright © 2017, Oracle and/or its affiliates. All rights reaserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. 1030

