
Andy Still & Phil Stanhope

Improving Web Application
Performance at the DNS Layer

DevOps
and DNS

Compliments of

http://dyn.com/oreilly

Andy Still and Phil Stanhope

DevOps and DNS
Improving Web Application

Performance at the DNS Layer

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-97867-2

[LSI]

DevOps and DNS
by Andy Still and Phil Stanhope

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Brian Anderson and
Virginia Wilson
Production Editor: Kristen Brown
Copyeditor: Sonia Saruba

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2017: First Edition

Revision History for the First Edition
2017-05-23: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. DevOps and DNS,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com/safari

Table of Contents

Introduction. vii

1. Introduction to DevOps and the Internet. 1
Background 1
Key DevOps Principles 3
Benefits of Using DevOps 5
DevOps and the Cloud 6
Role of the Internet in Modern Systems 6
Takeaways 7

2. DNS Primer. 9
How Does DNS Work? 9
Potential of DNS 12
Considerations and Risks 13
Takeaways 15

3. Preparing for Implementing a DNS-Based DevOps Approach. 17
Selecting a DNS Provider 17
Implementing a Monitoring Solution 20
Takeaways 23

4. Managing DNS in a DevOps Culture. 25
Traditional DNS Management 25
Remove the Fear of DNS Changes 26
DNS as Code 26
Takeaways 27

v

5. Using DNS in Your DevOps Approach. 29
Use DNS to Streamline Deployment Pipelines 29
Use DNS to Maximize Availability 32
Mitigating Performance Degradations 34
DNS as a Means of Cost Reduction 35
DNS as a Means of Service Discovery 36
Takeaways 36

6. DNS and DevOps: A Real-World Example. 37
Operations Culture at Intechnica 37
DNS as a Means of Distribution 38
DNS as a Means of Deployment 38
DNS as a Means of Optimizing Availability 39
DNS as a Means of Managing Failure 39
Takeaways 40

7. Conclusion. 41

vi | Table of Contents

Introduction

The nature and complexity of internet-based systems that are being
developed and run are ever-changing, and the business pressure is
for ever more frequent changes, higher throughput, and increased
reliability. Whether business to consumer or business to business,
web-based systems are ever more mission critical, and the market is
moving so fast that it is essential for business that new features and
fixes are deployed into production as quickly as possible.

These pressures have led to changes in the way we run systems, with
teams needing to be more reactive and have understanding of much
wider and more frequently changing systems than ever before.

A consequence has been the evolution of cultural changes such as
the DevOps movement which aims to create a dynamic environ‐
ment focused on improved team integration and communication, as
well as techniques that drive frequent change and improve reliabil‐
ity.

DNS has long been the public face of the internet, allowing users to
communicate with systems using friendly text-based names rather
than IP addresses. However, it has traditionally been viewed as a rel‐
atively static resource with changes that are often manual and usu‐
ally kept to a minimum.

This ability to hide the underlying implementation of systems
behind common names is a feature that can be taken advantage of in
order to implement the type of dynamic and flexible systems that a
DevOps culture provides.

In many ways, DNS could be described as the glue that holds the
internet together, and the DevOps movement is taking advantage of

vii

that flexibility and reliability to produce more, reliable, and faster-
changing systems.

This book aims to give an introduction to DevOps and DNS, intro‐
duces how they can be combined in a modern, internet-driven sys‐
tem, and discusses how the two can be used to together to improve
the ability of your team to deliver regular change to your system
while minimizing the risk of that change.

The objective is to give readers unfamiliar with these technologies
(or their use together) a grounding in some of the modern ways that
they are being combined, and provoke experimentation and further
reading on the subject.

viii | Introduction

CHAPTER 1

Introduction to DevOps
and the Internet

DevOps is a term that has many different and varying definitions,
but at its core it is simply the creation of a culture within an organi‐
zation that promotes efficiency and reliability by bridging the gap
between development, QA, and operations.

Before going into any detail about how DNS relates to and can be
used within a DevOps environment, it is worth taking a short time
to reiterate the background and the principles that are at the core of
the DevOps movement, and the impact that this movement has had
on companies that have implemented it.

Background
Traditionally, software was built by one group of people, develop‐
ment, tested by another group, QA, and maintained by a third
group, operations. Each of these groups was siloed and focused on
different deliverables. Development focused on writing code to
implement functionality, QA focused on ensuring there were no
issues with the code, and operations focused on ensuring that plat‐
forms remained available.

The result was that the progression of functionality to production
was often slow, and typically only a small number of large deploys
per year were made. The division in responsibility often led to
finger-pointing when problems arose.

1

Through the early 2000s, the Agile development movement made
great strides forward in improving the process by which software
was developed. The movement broke down barriers between busi‐
ness users, business analysts, development, and QA to develop
deployment-ready software much more regularly and efficiently.

One of the key elements of any Agile process is the importance put
on the value being created by any development effort. Crucially, that
value is only ever seen once software is in production and in use by
end users. This leads to the creation of a steady stream of
production-ready pieces of functionality waiting to be deployed.

Automated testing and continuous integration tooling made the
process of validating software as production-ready much shorter.

The DevOps movement evolved to take the same types of thinking
into the operational management of systems. This includes not only
technological advances such as virtualization, cloud systems, and
deployment, automation that simplify the process and repeatability
of deployment but also the human elements such as closer integra‐
tion between development and operations teams much earlier in the
development process (Figure 1-1).

Figure 1-1. Illustrating how DevOps relates to a traditional organiza‐
tion structure, taken from https://en.wikipedia.org/wiki/DevOps

2 | Chapter 1: Introduction to DevOps and the Internet

https://en.wikipedia.org/wiki/DevOps

The DevOps Name
In 2009, John Allspaw and Paul Hammond from Flikr delivered a
presentation entitled “10+ Deploys per Day: Dev and Ops Co-
operation at Flikr” at O’Reilly’s Velocity conference. This presenta‐
tion outlined how Flikr had integrated the development and
operations functions in order to streamline the release process and
operational overhead. The title was soon shortened to #devops on
Twitter and inspired Patrick DuBois to start the devopsdays series
of conferences.

Key DevOps Principles
DevOps is much more than just the combination of development
and ops. It is also a new way of thinking about ops as much more of
a proactive, rather than a reactive way of managing servers. Freeing
up time spent doing manual processes and dealing with issues
allows operations people to spend that time creating systems that
will dynamically respond to alert situations, or creating more proac‐
tive monitoring services to mitigate future risk of failure.

In many ways DevOps is a trade-off. The up-front work done to
mitigate future issues is sacrificed in favor of allowing change and
having systems in place to monitor and measure system behavior to
quickly identify problems as they arise.

While this may sound more risky, it is worth reminding ourselves
that for all the effort put in by traditional operations approaches to
minimize the risk of issues arising, issues did arise fairly regularly,
and the impact of resolving those issues was usually higher than in a
DevOps world.

DevOps is not a job title or a set of tools or even a methodology. It is
simply a culture or way of working that emphasizes certain core val‐
ues. As such, there is no defined set of practices and tools that incor‐
porate DevOps; it is more a set of principles.

The core principles have been defined in many different ways,
though all definitions share the same common themes and can gen‐
erally be categorized in the following three principles:

Key DevOps Principles | 3

http://bit.ly/2rrFnPl
http://bit.ly/2rrFnPl

• Integration and communication
• Automation and repeatability
• Big picture thinking

Integration and Communication
This is the core principle to DevOps: breaking down walls between
teams and getting people to work together as colleagues, not
competitors.

Firstly, this will remove the blame culture—the approach in any sit‐
uation being to blame others until proven otherwise. Shared respon‐
sibility will enable a quicker resolution as the team works together
to solve a problem.

Secondly, this will get potential issues spotted earlier on and a more
proactive solution design will be undertaken.

Building a cross-functional team and working toward a shared
objective focused on business objectives rather than silos focused on
protecting their own interests can only result in a better outcome for
the business.

Automation and Repeatability
Repeatability of process is one of the core tenets of DevOps. Just as
in Agile development, the rule “if something is hard to do, do it
early and do it often” applies.

This means that not only should your applications be easy to deploy,
your infrastructure should be easy to recreate, ideally using a fully
automated process. This involves a change in mindset: from infra‐
structure management as a process of manually installing and con‐
figuring hardware and documenting the process, to infrastructure
management being the process of managing scripts that will dynam‐
ically create and configure your infrastructure, usually within a vir‐
tualized or cloud environment.

The result is that infrastructure creation code can be managed in the
same manner as other development source code, and test platforms
can be created automatically as part of a test or production deploy‐
ment system.

4 | Chapter 1: Introduction to DevOps and the Internet

Big Picture Thinking
Developers want to solve all problems with code, DBAs want to
solve all problems in the database layer, and operations wants to
solve all problems with hardware. That is the nature of thinking
when in a very siloed world.

By bringing the teams closer, this issue is mitigated in two ways:

1. Earlier involvement of people with specialities so that all spe‐
cialities have input into a solution.

2. More knowledge sharing and appreciation of the elements of
the system outside of their expertise, allowing people to under‐
stand the potential for solutions in these areas.

As systems become more complex and the options available for sys‐
tem expansion become more varied, this becomes ever more impor‐
tant. For example, when running in a cloud environment,
performance issues can be addressed by either code investigation or
by increasing the size of the production environment. Likewise, SaaS
offering can negate the need for writing code, running infrastruc‐
ture, or both.

Benefits of Using DevOps
However, the benefits of using the DevOps approach are not just
theoretical. Organizations that follow DevOps principles often
report improvements in both speed and reliability.

One report stated that 63% of organizations using DevOps reported
that they release software more frequently, while another report sta‐
ted that organizations using DevOps reported deploying 30 times
more often than traditional organizations.

Similarly, 63% of companies reported seeing a better quality of soft‐
ware deployments. A mean time to recover investigation showed
that these organizations saw 60 times fewer failures and could
recover 168 times faster.

Moving to a DevOps culture also frees up operations time to focus
on improvements rather than firefighting, with traditional opera‐
tions reporting spending 21% more time putting out fires whereas
DevOps spends 33% more time on infrastructure improvements.

Benefits of Using DevOps | 5

DevOps and the Cloud
DevOps and cloud are two completely independent aspects of soft‐
ware delivery. You can deliver software using cloud platforms via
traditional organizational structures and have a complete DevOps
culture without using any cloud-based platforms; however, cloud
platforms do make enacting the DevOps principles easier in many
cases.

Cloud platforms generally blur the distinction between development
and ops, as they are systems that are designed for automation and
management via code-level APIs or scripting. Operational changes
can be implemented by developers within application code, and
operations people are writing code to manage how environments
become available for use by applications.

The big picture, in this case, becomes not only the application but
also the range of services offered by cloud providers that could be
used by the applications, how these would be implemented, and the
communication between systems.

Cloud environments have really enabled DevOps to become main‐
stream as the level of dynamic infrastructure creation and manage‐
ment needed for a true DevOps environment has become not only
possible and affordable to organizations of all sizes, but actually the
preferred way of working in those environments.

Automation, repeatability, creation and destruction of environ‐
ments, and infrastructure as code are all elements that have been
built into cloud platforms from the ground up.

Role of the Internet in Modern Systems
It may sound obvious to say that modern internet-based systems are
dependent on the internet, but it is worth taking a moment to think
about the actual impact this is having as systems become more com‐
plex, modular, and cloud based.

Before the internet was widely used, most systems were delivered as
client/server systems over a leased line-based WAN. So everything
was fully under your control; the full end-to-end connectivity and
infrastructure were all dedicated to you.

6 | Chapter 1: Introduction to DevOps and the Internet

However, this situation is very rare these days. Most connectivity
now travels over the public internet. This is true of the connection
between your users and your system, and increasingly between your
system and third-party dependent services. The quality of this con‐
nectivity is largely beyond your control.

Moving into the cloud, however, gives you even less control over the
connectivity in and out of your systems. When hosting systems
within a data center, you can discuss and understand the nature of
connectivity to the internet that are in place and use this as a decid‐
ing factor when choosing a data center. In the cloud this level of
detail is rarely made public.

Despite its increased importance to people running web-based sys‐
tems, the performance of the public internet is an area that is often
overlooked.

Takeaways
• DevOps is an evolution of movements such as Agile develop‐

ment and continuous delivery designed for optimizing the
throughput and reliability of complex systems.

• DevOps is not a process, set of tools, or a methodology, but a
culture based around three key principles:
— Integration and communication
— Automation and repeatability
— Big picture thinking

• DevOps is showing major improvements in speed and reliability
for companies adopting it.

• DevOps and the cloud are two completely separate technical
advances but are well suited to be used together.

Takeaways | 7

CHAPTER 2

DNS Primer

In many ways, DNS is the public face of the internet. It allows
friendly names such as google.com to be used instead of unfriendly
IP addresses.

Although it is a fundamental element to successful operation of the
internet as we know it, for many developers the DNS system is a
black box, something they rely on but assume will always “just
work.”

In some ways, DNS has been a victim of its own reliability. In gen‐
eral, with simple systems it is possible to just ignore DNS and it will
just work. As systems become more complex, however, DNS is
another tool that can be used both to mitigate problems and to opti‐
mize performance and delivery of systems.

As discussed in Chapter 1, this is another example of the DevOps
culture blurring the distinction between development and opera‐
tions, requiring developers to think about elements that were previ‐
ously entirely the domain of operations.

How Does DNS Work?
It is surprising how many developers have only a very limited or
even no understanding of how the DNS process actually works. So it
may be useful to give a quick, high-level overview of the process that
is followed when a DNS resolution request is made.

9

DNS History
In the early days of the internet, names were managed via a text file
(HOSTS.TXT) stored on the local machine that listed all the names
currently in existence. A master file was managed by the Stanford
Research Institute, and new entries could be requested by telephone
during business hours.

To this day, all Windows machines have a HOSTS.TXT file that is
the first point of lookup for domain name resolution.

By the early 1980s, this solution was seen as not being scalable
enough, and the Domain Name System was defined in 1983.

Students at the University of Berkeley created the first implementa‐
tion of a DNS system, BIND (Berkeley Internet Name Domain),
which is still the most commonly DNS software on the internet
today.

While there have been evolutions and enhancements of the proto‐
col over the years, the DNS system in use today is still fundamen‐
tally the same as first defined in 1983.

At the simplest level, all the DNS system does is convert a DNS
name into an IP address; however, as you’d expect there is a large
degree of complexity behind the system.

Every domain that is registered creates a DNS record, usually hosted
by the company that registers the domain; however, once registered,
the domain name can be transferred to be hosted elsewhere. This is
simply a text record that stores details about what information
should be given to anyone requesting details about this domain
name. This includes web-based resolution details as well as other
information such as where mail servers should connect to (MX
records).

In reality there are variations and optimizations of the system to
improve reliability and efficiency, but the essentials of the process
are as follows.

10 | Chapter 2: DNS Primer

When you type an address into a web browser:

• A check is made to see if the details of that name are known
locally, e.g., if the browser has made a previous request from
that same domain name or there is an entry in the local DNS
registry (e.g., hosts.txt on Windows).

• If no local record is found, a request is sent to your local DNS
server. This could be running locally on your machine or on an
office network, but most commonly it is provided by the ISP
that supplies your internet connection.

• The local DNS server again checks if it already has the details of
the name being requested. If there is no cached record, then the
DNS server needs to locate the details of the name server that
hosts the domain record for the address you are trying to
resolve (the authoritative domain name server).

• To do this the DNS server breaks the name down into its differ‐
ent sections, starting from the righthand side of the domain
name. For example, for www.google.com, this would be split into
com, google, and www. The section after the final . of the
domain name (in this case, com) is known as the top-level
domain (TLD). A root name server is connected to find details
of the server that holds the domain record for the TLD.

• The DNS server will make a request to the TLD name servers
asking for details of the name servers that contain the details of
the next section of the domain name (in this example, google).
The DNS server then makes a request to the name server that
holds the details for google.com. This name server may then
return details of another name server that holds the records
for www.google.com or, more likely at this point, will return the
address associated with www.google.com.

• The address returned by the remote name server can be an IP
address or it could be another domain name, known as a
CNAME; for example, www.google.com may return a reference
to cdn-us.aa1.google-us.com.

• If a CNAME is returned, the DNS server then repeats the pro‐
cess with the CNAME until an IP address is resolved.

An example of a recursive DNS process is shown in Figure 2-1.

How Does DNS Work? | 11

Figure 2-1. Illustration of how a recursive DNS works in practice,
taken from http://bit.ly/2rsljNx

NSLookup

All domain name resolution information is publicly
available. Using the NSLookup tool that is available on
the command line of most computers, you can directly
query the DNS system and find all the details of any
DNS registration. NSLookup allows you to query using
your default DNS server and also by specifying a dif‐
ferent DNS server (e.g., Google’s public DNS server
8.8.8.8) to validate that your local DNS is returning the
same details as other people are seeing.
There are also a number of websites that will complete
an NSLookup request for you.

Potential of DNS
As well as providing a more friendly and memorable address for a
website, using DNS names also gives a number of other advantages:

Changing backend systems
Keeping a consistent DNS name allows you to re-point to a dif‐
ferent backend system at any point without users needing to be
aware of the change. This could be a major change such as a
move to a new data center, or short-term changes such as point‐
ing to a DR system or to an updated version of the system as
part of a deployment process.

12 | Chapter 2: DNS Primer

http://bit.ly/2rsljNx

Multiple backend systems
DNS names can be used to obscure that there are actually multi‐
ple systems delivering the same system. This could be done on a
very simple level where each user is given a selection from a list
of available systems, or it could be done more intelligently based
on things such as geographical location.

These advantages provide a lot of benefits when looking at the world
in a dynamic DevOps or cloud-based system. In this world the phys‐
ical, IP-based servers that are actually delivering systems are ever
changing as systems are automatically created and destroyed on
demand, meaning that the easiest way to address systems is by tak‐
ing advantage of the flexibility that DNS provides.

Considerations and Risks
Of course, there are also downsides to using DNS as a proactive ele‐
ment of your DevOps culture. As with any other tooling/methodol‐
ogy choices, these need to assessed in terms of the benefit/risk trade-
off they provide.

Speed of Change
Speed of change is an element that is often raised as a reason not to
use DNS for any change that you want to be as close to instant as
possible.

As mentioned above, the amount of time a DNS record is cached is
determined by the TTL. This is within your control.

What is TTL?
TTL, or time to live, is the element of a DNS record that tells the
requester how long the record is valid.

In other words, if the TTL for your DNS record is set to 24 hours,
once a browser has resolved that DNS record, it will continue to use
that same value for the next 24 hours regardless of whether you’ve
updated the details.

If the TTL is set too high, then DNS cannot be used as a failover
method, as the change will take too long to take effect with any
existing users. Setting a very low TTL, however, adds extra over‐
head, as DNS lookups have to happen much more regularly, which

Considerations and Risks | 13

adds to the page load time for a user and increases the stress on the
DNS servers.

The default setting for TTL values was traditionally 24 hours, and it
was usual to have to wait over a day for the impact of DNS changes
to take effect.

By setting a low TTL, you can specify that you don’t want the record
to cache for long. However, there are two potential gotchas with this:

1. Having a low TTL increases the amount of DNS lookups that
are happening. This impacts performance for the end user as
there is overhead associated with that request and increased
overhead on your DNS provider. If your DNS provider cannot
cope with that, then it can affect the speed and reliability of
DNS resolution. If taking this approach, it is essential that you
select a resilient DNS provider that is equipped to handle high
throughput of requests.

2. Some DNS resolvers do not honor TTL values below 30 sec‐
onds. In this case, even if you set a TTL below 30 seconds, the
resolution would remain cached for 30 seconds.

On top of the TTL, there is also some additional time to complete
the other actions associated with DNS updates:

• Time taken to accept the update and update the record on the
central Authoritative server

• Time taken to distribute that update to all other distributed
Authoritative servers

These values will be determined by the infrastructure and systems
used by your DNS provider, and it is worth analyzing them to deter‐
mine how long updates take to take effect. If longer than expected,
then trial other providers to see if they can make changes more
quickly.

Another Point of Failure
Others point to relying on DNS as being another point of failure,
another element that has to be managed and therefore can go
wrong. It is also pointed out that if IP addresses are used, they will
carry on working even if the DNS system fails.

14 | Chapter 2: DNS Primer

This is true; however, in the extremely unlikely situation where the
DNS system was to fail, the entire internet as we use it today would
be unusable. DNS is the ubiquitous glue that is the basis for most
internet-based communications.

For this reason, DNS is a highly distributed system that is fault toler‐
ant (but like any other system it is not infallible) and built that way
from the ground up.

For most usages, the flexibility gained by using DNS outweighs the
additional overhead and risk of adding that potential point of
failure.

Takeaways
• DNS is a fundamental system that keeps the internet operating

as expected. It is worth taking the time to understand its
complexities.

• DNS is a distributed, recursive system that queries domain
name servers until it finds the authoritative record for the
address it needs to resolve.

• Using DNS creates more flexible systems that allow for chang‐
ing backend systems and systems hosted in multiple locations.

• There are risks associated with using DNS as the basis for sys‐
tem management, including the speed of change, and the man‐
agement and additional risk of failure. These should be assessed
against the benefits for your system.

Takeaways | 15

CHAPTER 3

Preparing for Implementing a
DNS-Based DevOps Approach

When starting down the road of moving toward a DevOps-based
culture that takes advantage of the DNS-based solutions recom‐
mended below, there a few areas that need consideration.

This chapter will outline some of the building blocks that are
needed.

Selecting a DNS Provider
If you want to move ahead with using DNS as an integral element of
your DevOps approach, then the selection of an appropriate DNS
partner is a key decision. There are many providers out there that
offer a wide range of solutions.

Hosting partners or cloud providers will often offer a DNS service as
part of their offering. It is important to remember that you do not
need to host your DNS with them; while there are advantages to
centralizing management in one area, there are also some advan‐
tages to maintaining an independent DNS provision. Most impor‐
tantly is that it gives you freedom to move to different providers in
future or to spread systems across multiple providers. However,
regardless of the independence of the provider, it is crucial that the
provider you choose has the level of expertise in the DNS arena to
provide the level of support necessary for a mission-critical

17

platform. For many providers, DNS is an add-on service that is not
given the importance it deserves.

It is also essential that when evaluating potential partners or evaluat‐
ing whether to use your existing cloud provider, the following
important capabilities are considered:

• Performance
• Dynamic control

Performance
Using DNS in the dynamic, often-changing manner that is neces‐
sary will require reduction of TTL values to much lower values (typ‐
ically less than 30 seconds). This means you are more dependent on
your DNS provider, and therefore the performance of your DNS
provider becomes even more important.

DNS performance needs to be validated against a number of use
cases, as discussed below.

Low latency
Regardless of your TTL settings, it is important that your DNS pro‐
vider offer a low-latency network, as all users have to resolve your
DNS records before they can access any of your content. However,
this becomes more important the more often users are having to re-
resolve your records; with a TTL set at below 30 seconds, users will
be resolving the DNS multiple times per visit.

If the latency of your DNS is too high, this will block delivery of any
content, which would be noticeable to users. As it is the first request,
there is no way to code around or hide this delay.

Domain sharding

Many sites use domain sharding, that is, serving con‐
tent from multiple subdomains in order to improve
performance.
In this case, the overhead of DNS is multiplied as each
subdomain will need to be resolved, though well-
constructed pages can mitigate this by ensuring DNS
requests are executed concurrently or asynchronously.

18 | Chapter 3: Preparing for Implementing a DNS-Based DevOps Approach

When evaluating the latency of DNS resolution, remember to con‐
sider the latency that all your users experience regardless of location.

If you have a worldwide user base, then ensure that your DNS
records are geographically distributed and are being resolved by
servers as geographically close as possible.

High capacity and resilience
Decreasing TTL values means that you will be asking your DNS
provider to do a lot more resolutions than previously and are rely‐
ing on that provider to always be available to serve updated details.

Ensure that your provider has sufficient capacity to be able to handle
this increased amount of traffic without affecting the speed of
resolution.

Also, ensure that the provider has sufficient fault tolerance built into
their networks to be able to cope with failure within their systems or
networking issues within the wider internet that may make elements
of their DNS network unavailable.

Speed of propagation
Remember, when relying on DNS for making dynamic changes, the
time taken for updates to take effect is:

Time taken to update + time taken to propagate + TTL

When choosing a DNS provider, make sure that any updates that
you make are not only updated quickly, but are also propagated
through the rest of the distributed authoritative servers as quickly as
possible.

When validating this, ensure that you consider the speed of propa‐
gation to all areas where you have a user base.

Dynamic Control
Any DNS provider you use in this model must offer dynamic con‐
trol of your DNS records.

Many traditional services only accepted DNS changes via email or
telephone requests, with these requests being manually imple‐
mented at some point after the request was received. Obviously this
is not viable for the sort of reactive change that is needed. Even a
web interface allowing direct updates is not suitable.

Selecting a DNS Provider | 19

All changes need to be able to be implemented with no manual
intervention.

It is essential that the DNS provider you choose has a comprehen‐
sive API that allows changes to be made regularly and instantly
without any need for human interaction.

This enables you to integrate DNS management into your automa‐
ted and scripted deployment and update methodology.

Implementing a Monitoring Solution
A key part of a cohesive DevOps approach is ensuring that sufficient
data is collected throughout the process to allow everyone involved
to have a much more detailed understanding of the current state of
the system. This is especially important as we are giving away more
and more control of elements of the infrastructure that makes up
the system.

Having this depth of knowledge allows for dynamic systems to be
put in place to handle resolution of issues quickly and effectively.
Again, this focuses on the ability to quickly and reliably implement
change in response to problems.

The DevOps culture, on top of the move to cloud where much more
of the infrastructure is out of your control, means that monitoring
has to be extended to much more than traditional infrastructure
monitoring.

In the DevOps and cloud world, monitoring has to be focused on
understanding the holistic view of the performance of your applica‐
tion. This means taking monitoring to the next level of detail; typi‐
cally this includes three additional views:

• RUM and EUM
• APM
• IPM

RUM and EUM
Real User Monitoring (RUM) and End User Monitoring (EUM) are
focused on what is ultimately the most important metric of all. What
is the experience that actual users are seeing?

20 | Chapter 3: Preparing for Implementing a DNS-Based DevOps Approach

RUM focuses on the experience of actual users. Typically this is
done by including a beacon within the system that sends back data
to a central server outlining details of how the system is working.
The most common implementation of this is injecting some Java‐
Script into the content of a web page that monitors performance
metrics.

RUM is valuable because it captures what is actually happening to
users; it is not dependent on a set of predefined measures that are
being proactively measured. If issues are raised by users, then analy‐
sis can be completed to first determine whether the issues are affect‐
ing a wider group of users, and then to try and drill down to the
cause of the issue.

RUM also allows you to determine if there is a pattern to the users
affected; e.g., are they using a similar browser or type of connectiv‐
ity, or are they from one geographic location?

EUM is similar but is based on a set of synthetically executed,
repeatable tests carried out from a “clean room” location. This allows
you to assess the results of tests without worrying about the results
being affected by unknown conditions.

A good monitoring solution includes elements of EUM and RUM,
as they both add value in different situations.

RUM is valuable in that it reflects what actual users are experiencing
and will flag issues beyond the range anticipated when defining test
plans. RUM executes continuous testing against your complete
application, albeit in an unscientific manner.

EUM adds value in that it is a more scientific approach to testing;
you can be confident when failure occurs that no other factors will
be changed. EUM also allows you to proactively identify issues
without users experiencing them first (hopefully resolving the issue
before it affects users).

APM
Application Performance Monitoring (APM) is a monitoring tech‐
nology that sits within your application and gathers core metrics
about what is going on under the hood of your application.

These metrics will usually go down to a granular detail about how
your application is behaving (such as method execution times, SQL

Implementing a Monitoring Solution | 21

query execution times), as well as the overhead of communication
with external systems.

APM allows comprehensive assessment of what your application is
actually doing at a code level rather than the impact that it has on
external items such as servers or user experience. This is invaluable
when assessing the root cause of any issues or when completing per‐
formance optimization.

Many modern APM solutions will integrate with RUM and EUM
systems to get a complete end-to-end breakdown of user interaction
with your system.

IPM
Internet Performance Management (IPM) is the gap that is often left
in a monitoring solution. This looks at the monitoring and analytics
in the performance of the internet between users and your applica‐
tion.

Note that this may be a dedicated tool or may be API-based data
feeds from different sources that are pulled into dashboards. Over‐
all, the aim is to give an operational awareness for the way in which
your applications and the services they interact with are available
through the internet.

Applications are increasingly reliant on the performance of the pub‐
lic internet, so it is ever more important that we have an under‐
standing of any issues that may arise. This applies not only to the
applications you run yourself, but also to the other internet-based
applications that your applications rely on.

Typically this will be routing issues that may be temporarily or per‐
manently in place between elements of your user base and your sys‐
tems. The internet is a volatile environment, and these types of
issues can arise at any point.

IPM monitoring allows you to become aware and react to these
issues, for example, by using geolocation-based DNS to route those
users to an alternative location.

22 | Chapter 3: Preparing for Implementing a DNS-Based DevOps Approach

Takeaways
• Selecting a DNS partner is especially important. Make sure you

look beyond your hosting or cloud provider.
• Validate that your DNS partner provides a high performance

solution that meets your expectations in:
— Speed of resolution
— Speed of propagation
— Capacity and resilience
— Provision of a dynamic API

• Effective DevOps provision will require effective end-to-end
monitoring to enable you to understand and react to issues as
they arrive.

• Any monitoring solution should include:
— RUM and EUM
— APM
— IPM

Takeaways | 23

CHAPTER 4

Managing DNS in a DevOps Culture

DNS can be an important element when managing systems within a
DevOps culture, as outlined in this chapter.

However, before this can be reliably implemented, your DNS estate
should be managed in an appropriate way to allow the amount of
flexibility and dynamic change that will be required.

Traditional DNS Management
Traditionally, DNS was seen as being fairly static, with changes
being done only occasionally. DNS changes were done by manually
editing a text file on a server, for those running their own DNS
servers, or more commonly by submitting a request to the company
that managed the DNS records. This change would then take time to
propagate through the internet, depending on the TTL set for the
record.

This approach was acceptable in a traditional environment of rela‐
tively static resources where change was to be kept to a minimum.

However, when implementing a DevOps approach, it is necessary
that DNS management is approached in a much more dynamic
manner, accepting that change is not only inevitable but an essential
element in managing a DNS-driven DevOps implementation.

This includes a change in mindset toward DNS changes.

25

Remove the Fear of DNS Changes
DNS carries with it an extremely high level of risk. After all, if a mis‐
take is made, it can wipe out connectivity to your site for an exten‐
ded period, especially in the world where TTL values were typically
set to 24 hours.

When combined with the traditionally quite complex or cumber‐
some way that DNS was managed, it lead to a fear of making DNS
changes.

DNS was often seen as something that just shouldn’t be touched
unless absolutely necessary.

However, this is contrary to the DevOps mentality of “if something
is hard to do, do it early and do it often,” making change easy by
making it automated and repeatable.

With this in mind, it is essential that when applying a DevOps men‐
tality to your organization, you start to bring your DNS provision
under control and make management of it well practiced.

To do this, it is essential that you use a DNS provider that provides
dynamic API-based control, allowing changes to be made easily as
part of scripting process.

Changes to DNS can therefore be automated via the API and exe‐
cuted on demand.

DNS as Code
One of the most common elements implemented in a DevOps cul‐
ture is a change to viewing “infrastructure as code.” That is, not see‐
ing infrastructure as physical devices with state that need to be built
and configured, but instead seeing infrastructure as simply a set of
scripts that have to be executed in order to recreate the system.

This code can then be managed, evolved, and tested in the same way
as application code. Your infrastructure becomes simply an exten‐
sion of your application, managed and maintained in the same man‐
ner. Therefore the integration between dev and ops becomes even
closer.

26 | Chapter 4: Managing DNS in a DevOps Culture

If all DNS changes can be managed via a dynamic API, then it is a
logical next step to start extending your infrastructure as code to
include your full DNS records, tracking changes in source control.

This will easily allow the full recreation of DNS records, in the event
of a loss or a migration to an alternative supplier.

Takeaways
• To take advantage of DNS in a DevOps world, you need to start

managing your DNS records inline with a DevOps approach.
• Traditionally, DNS was seen as a very static environment that

was manually managed; this needs to change.
• Remove the fear of DNS changes by implementing the “if some‐

thing is hard to do, do it often” mentality by using DNS provid‐
ers and tools that remove this difficulty.

• Choose a DNS provider that provides the level of dynamic con‐
trol that will be needed.

• Treat your DNS records as code, creating scripts that can
dynamically recreate your DNS state at any point.

Takeaways | 27

CHAPTER 5

Using DNS in Your
DevOps Approach

We have discussed the benefits of DNS and DevOps independently,
now let’s drill down into some more detail about how DNS can be
employed specifically when implementing a DevOps culture.

For all of these there are alternative ways to deliver the same results,
but the built-in fault tolerance and independence from your other
infrastructure mean that it is worth considering using DNS.

Use DNS to Streamline Deployment Pipelines
One of the primary objectives in moving to a DevOps culture is to
increase the the cadence of deployments to production, ideally mov‐
ing much closer to a Continuous Delivery system.

Continuous Delivery

Continuous Delivery is a term coined to refer to the
objective of an Agile development system to ensure
that changes would always be ready to go to produc‐
tion after completion. Originally coined to mean con‐
tinually deliverable, it has been adopted within the
DevOps world to refer to the practice of being so con‐
fident in the automated validation and deployment
pipeline that any changes get pushed directly to pro‐
duction without any human intervention.

29

This speed of deployment involves several changes:

• Trust in the validity of automation of the testing and deploy‐
ment process

• Repeatability of the deployment process
• Reliable way of validating success of deployment
• Simple and reliable rollback process

There are several ways that DNS can be employed to deliver these
objectives.

Blue/Green Deployment
Traditionally, deployment of systems was done by installing new
software over the top of the old software on the same hardware.
Rollback was then completed (if necessary) by reinstalling the previ‐
ous version or in worst case scenarios by restoring the entire server
from a backup.

The issue with this approach is that over time, the state of the target
machine will become less and less like that of the development and
test machines. Development and test machines by their very nature
are subject to more experimental and failed builds than production
machines, all of which will leave artifacts such as updated system
files or elements of the system not properly rolled back. This all
leads to variants in behavior between what is seen in testing and in
production.

What is preferable is that each release of the system is deployed onto
a clean machine with a known base state. The infrastructure as code
and automation defined above, combined with virtualization or
cloud platforms make this a reality; with every new round of testing,
a completely new test environment can be created and the previous
one destroyed.

This pattern can also be applied to deployment. At deployment time
a replacement environment is created alongside the existing envi‐
ronment. Traffic is then rerouted to use the new environment. If the
system allows, this can be done gradually, allowing small amounts of
traffic to use the new system while validation takes place. In the
event of failure, traffic can just be redirected back to the old envi‐
ronment.

30 | Chapter 5: Using DNS in Your DevOps Approach

This process is referred to as blue/green deployment (or sometimes
green/gray) to indicate that you have a live environment (green) and
a production ready but offline (blue) environment.

There are several ways to manage the switch between the two plat‐
forms, but dynamic DNS is an excellent means as it is simple and
requires no additional hardware within the environment.

After the new environment is created, the DNS records are switched
to point to it instead of the old environment. Typically, this would be
done as part of an automated process via the API provided by the
DNS provider.

Staged Rollout
A reliable way to ensure that deployments are not introducing issues
is to stage the rollout. This involves releasing the new version to a
subset of users and monitoring those users to determine whether
that release should be rolled out to the rest of the users (or to pro‐
gressively larger groups of users).

Some companies use this method as a way of user testing new fea‐
tures to determine whether those features are popular with users.
Known as A/B testing or multivariant testing, this is an increasingly
popular way of determining whether or not features should be
released. Facebook, for example, has most of the next six months
worth of new features already going through testing with subsets of
users to determine whether they should be released to the full user
population.

There are network-based methods for managing a staged rollout of
a system; for example, load balancers can be configured to route
traffic to different systems.

However, DNS is a good solution to the problem as it removes the
point of failure from within your network and allows for easier dis‐
tribution across multiple data centers if required.

This can be managed in two ways. In the simplest example, your
DNS provider could just be configured to send a set percentage of
users to each system. For example, 10% could be sent to the new sys‐
tem, and the remainder of DNS queries will still resolve to the old
system. Note that in this case it is important that your system be
aware that individuals were previously on the new system and han‐
dle that appropriately.

Use DNS to Streamline Deployment Pipelines | 31

More sophisticated DNS systems can handle this in slightly more
elegant ways, such as segregating users by geographical area rather
than at random.

Geographical region versus network topological region

When talking about resolving DNS by geographical
region, it is actually based on internet network topol‐
ogy rather than geographical region. That is, it is based
on the way that a connection is routed through the
internet rather than its actual physical location.
For simplicity, throughout this book we will talk about
routing traffic based on geographical location.

Splitting traffic in this way has several benefits:

• You can make a conscious decision about the users that you
want to try out new features with, e.g., users who are less of a
business risk or who have a particular relevance to the feature
being rolled out.

• You can manage the support issues more proactively, having
more awareness about which versions people are using if they
contact you with issues.

• Multiple versions can be tested concurrently with different geo‐
graphical regions.

Use DNS to Maximize Availability
Availability is an essential aspect of any internet-based system, with
downtime often resulting in short-term loss of income and longer-
term loss of users. In this section, we will look at some of the ways
that DNS can be used to improve availability of systems.

DNS as a Load Balancer Replacement
Load balancers (or application delivery controllers) are devices that
route traffic to multiple servers. This can be done via simple meth‐
odologies such as just using a round-robin approach to send each
request to the next server in the list, more complex ones such as the
server that is currently responding quickest, or even intelligent rout‐
ing based on pattern matching on the URL being requested or other
elements of the header.

32 | Chapter 5: Using DNS in Your DevOps Approach

Load balancers, however, have a number of drawbacks:

• They are usually devices that sit within your infrastructure and
therefore the traffic that is routed to them is all coming into a
single point within your infrastructure.

• They have limited capacity.
• They can often only route traffic over a local LAN network.

Modern dynamic DNS can be used as a replacement for load balanc‐
ers, offering more dynamic, global load-balancing solutions with the
ability to balance traffic based on different criteria.

Using DNS to load-balance traffic has several advantages:

• Traffic can be balanced across multiple data centers without
needing to go through a central load-balancing location.

• DNS is well suited for location-based load balancing. As long as
your DNS provider offers geolocation-based resolution, then
this is the ideal way to route traffic to the closest location.

DNS-based load balancing is not as feature rich as most of the load-
balancing solutions available, but if you have straightforward
requirements, it is an option worth considering as it is low overhead
and easily configurable.

Integration with Monitoring and Alerting
DevOps very much involves a mindset shift, especially for people
from a traditional operations background.

The traditional operations approach was to look for consistency of
platform and therefore minimize change. The focus in that case was
on planning for change and doing as much up-front mitigation as
possible.

Moving to a DevOps world means moving to a system that accepts
that change will constantly be happening and that errors will occur.
The best way of dealing with this is by having a comprehensive
approach to system monitoring: being aware at all times of the state
of the system and how to deal with any failures that are seen, ideally
in an automated fashion.

DNS can be integrated into this approach to ensure that when issues
are seen, appropriate action is taken to remove the problem area

Use DNS to Maximize Availability | 33

from the public system or to reroute users to an alternative imple‐
mentation or DR version of the system.

DNS sits remotely from your underlying architecture and becomes a
tool that can be used for addressing issues as they arise, DNS pro‐
vides the capacity for a range of actions to be taken, depending on
the nature of monitoring being undertaken.

Mitigating Performance Degradations
Because of the unique position that DNS employs, it can be used as
an effective tool for handling performance issues at many different
levels.

DNS sits independently from the rest of your system, allowing
changes to made throughout your system, independent from your
hosting or cloud provider.

Infrastructure-Level Performance Issues
The most familiar sort of performance issues are those seen within
your own infrastructure. These could be caused by capacity issues
within your application, or by failing or misconfigured hardware,
either directly within your infrastructure or within the local net‐
working infrastructure.

As discussed, cloud provision increasingly takes resolution of these
latter issues out of your hands.

However, what cloud takes away with one hand it gives back with
the other, allowing rapid recreation and upscaling of systems.

DNS offers an ideal methodology for managing resolution of these
situations. Whether the resolution is expanding capacity or recreat‐
ing the system elsewhere, the DNS records can be quickly updated
to point to the improved solution.

Network-Level Performance Issues
As the use and reliance on the public internet increase, so do
network-level, performance-related issues. Whether these are
internet-level routing issues or failed peering issues associated with
the data center you are using, these can have dramatic effects on the
performance as well as availability of your systems.

34 | Chapter 5: Using DNS in Your DevOps Approach

However, as with the issues in the section above, DNS offers an ideal
solution for dealing with these issues.

Whether the decision is to recreate systems in a different cloud
region or to switch over to a backup or DR system, DNS records can
allow for a dynamic switchover to the replacement system.

Geographic Performance Issues
An additional area where DNS can be used to mitigate performance
issues is where issues are seen in performance for specific geo‐
graphic locations. This could be illustrated in data coming back
from your RUM systems or in issues identified in your IPM system.

If your DNS provider offers geolocation, then your DNS records can
be updated to point to a better-performing version of your system.
This can be either temporary or permanent, depending on the
nature of the issue.

DNS as a Means of Cost Reduction
The dynamic nature of many modern systems, particularly cloud-
based systems, means that systems can be created or scaled up to
meet short-term demand. This will ensure that the system in place is
as cost effective as possible, only using the resources needed at that
time.

Typically this will be around one of the following criteria:

• Short-term predictable demand, for example, to support a pro‐
motion, product launch, or seasonal demand.

• Regular predictable demand, for example, to deal with a busy
period every day or other known usage pattern.

• Unanticipated spike events, such as those triggered by TV or
social media mention of your system.

Any of these can also be managed geographically, for example, spin‐
ning up a region-specific version of your system during peak peri‐
ods and then sending all users to a central system during quiet
periods.

For all of these situations DNS can be used as the means to ensure
that users are being directed to the appropriate place. Integrating

DNS as a Means of Cost Reduction | 35

DNS changes with the same system used to scale up and down the
systems ensures that all changes are dynamic and seamless.

DNS as a Means of Service Discovery
Applications are becoming more complex and increasingly are
based on the aggregation of multiple services, both controlled by
yourself and third parties. Likewise it is common practice now to
offer access to your systems via an API.

It would be impractical to provide access to these services via fixed
IP addresses:

• There would be no provision for moving the system to alterna‐
tive hardware or location in the future.

• Scaling the system, especially to geographically diverse loca‐
tions, would be more difficult.

Putting services behind DNS entries allows these services to be
dynamically provisioned and managed without needing to inform
the end users of any changes.

This is the way that all cloud-based services are provided; access is
given via a URL that hides a dynamically scaling provision.

In this manner, DNS really is becoming the glue that holds the inter‐
net together as the amount of DNS-based service provision is con‐
stantly growing.

Takeaways
There are a range of ways to take advantage of DNS when moving to
a DevOps culture:

• To streamline your development process in ways such as blue/
green deployment or staged rollouts.

• To improve availability such as by using DNS-based load bal‐
ancing or by integrating DNS management with ongoing moni‐
toring solutions.

• To mitigate performance issues at application, network, or inter‐
net layer.

• As a means of cost optimization or reduction.
• As the basis of a service discovery and management protocol.

36 | Chapter 5: Using DNS in Your DevOps Approach

CHAPTER 6

DNS and DevOps:
A Real-World Example

The final chapter of this book will illustrate how we use DNS within
the DevOps culture that we have at my own company, Intechnica, to
ensure that we are optimizing deployments and minimizing risk
when running our TrafficDefender product.

TrafficDefender is a feature-rich traffic management system that sits
in front of websites, routing traffic back to the origin servers. This is
a completely cloud-hosted service.

DNS plays a core part in how we manage, distribute, and mitigate
risk with the product.

All this is made possible because we use a DNS provider that has an
API that allows for frequent changes to be made, and those changes
are very quickly propagated through the internet.

Operations Culture at Intechnica
We have a DevOps culture. Our mindset is focused on getting small
changes out often, and as such, all infrastructure creation and
deployment needs to be fully automated and repeatable. As every‐
thing is cloud-based, this approach is much easier.

The rate of change, as well as the mission-critical nature of the sys‐
tem, mean that we have to have a large body of active monitoring.
However, seeing as we run everything in the cloud, we have only

37

minimal control over the infrastructure and therefore are reliant on
the monitoring data to indicate when problems arise and then react
to them as needed.

DNS as a Means of Distribution
When users sign up to our product, they are given a URL as an end‐
point. This is their only means of accessing the product. We retain
complete freedom to change or update the infrastructure that is run‐
ning the service without the clients being aware of or impacted by
the change, simply by updating the DNS record.

This is the same approach taken by most cloud-based services and is
a very valuable means of control, allowing a changing, dynamic sys‐
tem to be used with, as far as the client using the service is con‐
cerned, a completely static endpoint.

DNS as a Means of Deployment
Because we are capable of repointing the client’s endpoint quickly,
we can use DNS as our means of deployment of new versions.

When deploying an update we use the blue/green approach
described earlier. A replacement version of the system is created—in
this case a completely new version of the environment—and then
the DNS is updated to point users to the new system. The old ver‐
sion remains in existence, but inactive.

As mentioned above, there is potential to gradually migrate traffic
over, running the systems in parallel for a time while correctness of
the new system is validated. For technical reasons this approach
won’t work for us and we need to migrate all traffic simultaneously.

After migration, the previous environment is left in place until we
are confident that no issues have been introduced that would neces‐
sitate rollback.

DevOps doesn’t mean no planning or testing

It is worth noting that, just like Agile development
doesn’t mean no planning, DevOps doesn’t mean no
upfront planning or testing. It doesn’t mean just going
ahead and arbitrarily making changes to production.

38 | Chapter 6: DNS and DevOps: A Real-World Example

DevOps is equally as concerned with avoiding failure as traditional
ops, it is just approaching it in a different way.

Before reaching production, the new versions have been through
extensive testing, both manual and automated, to the point that we
are comfortable with them going into production. The DevOps
approach makes that transition to production much quicker and
more efficient, and the measurement and monitoring in place make
it much easier to detect and determine the root cause of any issues
that may arise.

Though we keep the previous environment as a failsafe to roll back
to, we have never had to exercise that option. Any changes seen after
deploys have been sufficiently minor, and the process for deploying
updates so simple, that it has always been easier to fail forward.

DNS as a Means of Optimizing Availability
Because the system we provide is a mission-critical system, it is
important that high levels of availability are maintained. This means
that geographically distributed systems are essential. We use DNS to
distribute this load across multiple cloud availability zones.

Our monitoring solutions are configured to detect any issues both
within the system and connectivity issues from outside the system,
and to be able to dynamically react to any failure. In the case of fail‐
ure, a replacement environment can be created in an alternative
location, and the DNS records are dynamically updated to point to
this new environment.

However, this is not a foolproof system as there can be issues that
affect all locations within a cloud region. In this case our DNS
records can be dynamically configured to redirect traffic to an alter‐
native region.

DNS as a Means of Managing Failure
As mentioned above, this system sits in front of websites and han‐
dles any traffic that is routed to that website. If it was to fail, it would
take that site offline. Obviously this is something we want to avoid.

In the event of complete disaster, we use DNS as the final failsafe. If
our system is completely down, we can modify the DNS for the

DNS as a Means of Optimizing Availability | 39

client to bypass our system and route traffic directly to the clients
servers.

Takeaways
DNS is a core part of the DevOps culture at Intechnica, being used:

• As a means of distribution access to the system, allowing for
scaling and migration of the product without need for change
by the client.

• As a core part of the deployment process.
• As a way of optimizing availability.
• As the final level means of mitigating failure, using DNS to

potentially bypass the system entirely.

40 | Chapter 6: DNS and DevOps: A Real-World Example

CHAPTER 7

Conclusion

There is no doubt that DevOps is a buzzword at the moment, but
like many buzzwords there is a solid foundation behind it. When
implemented well, a DevOps culture can be beneficial to a business,
both in terms of increased throughput of change and increased
reliability.

DevOps is about a change in focus: from minimization of change to
repeatability of creation, from documentation to automation, static
to dynamic platforms. It is about focusing on change and ensuring
the measurements are in place to be aware of the impact of that
change.

DevOps delivers a world where the focus is on flexibility and
responsiveness, where systems are automated and repeatable so that
they can be created and destroyed as needed.

In this sort of world, DNS becomes the glue that enables the levels of
flexibility needed, allowing improved deployment capabilities,
improved availability, improved cost optimization, and reduced per‐
formance issues.

As such, you need an effective DNS provider to ensure that you can
have the levels of performance as well as the speed of update that are
essential for running the flexible and responsive system that is
needed.

Most importantly you need to ensure that you can manage your
DNS programmatically and make regular, automated changes that
are immediately effective.

41

Once you have these elements in place, you can use DNS as a very
effective tool to deliver the benefits you aim to achieve by moving
toward a DevOps culture.

42 | Chapter 7: Conclusion

About the Authors
Andy Still has worked in the web industry since 1998, leading
development on some of the highest traffic sites in the UK. After 10
years in the development space, Andy cofounded Intechnica, a
vendor-independent IT performance consultancy to focus on help‐
ing companies improve performance of their IT systems, particu‐
larly websites. Andy focuses on improving the integration of
performance into every stage of the development cycle with a partic‐
ular interest in the integration of performance into the CI process

Andy is one of the organizers of the Web Performance Group North
UK and Amazon Web Services NW UK User Group, blogs regularly
at Internet Performance Expert and Performance Patterns, and
started the programming initiative Progvember.

Phil Stanhope is the VP of Technology Strategy at Oracle. An entre‐
preneurial technology executive who has operated at the intersec‐
tion of business and technology for the past 25 years, he has
consistently demonstrated success developing and executing strate‐
gies to create new products, leverage emergent technologies to bring
new life to existing product lines, and oversee service delivery and
operations.

http://www.intechnica.co.uk
http://internetperformanceexpert.com
https://performancepatterns.wordpress.com
https://twitter.com/progvember

	Cover
	Oracle + Dyn
	Copyright
	Table of Contents
	Introduction
	Chapter 1. Introduction to DevOps and the Internet
	Background
	Key DevOps Principles
	Integration and Communication
	Automation and Repeatability
	Big Picture Thinking

	Benefits of Using DevOps
	DevOps and the Cloud
	Role of the Internet in Modern Systems
	Takeaways

	Chapter 2. DNS Primer
	How Does DNS Work?
	Potential of DNS
	Considerations and Risks
	Speed of Change
	Another Point of Failure

	Takeaways

	Chapter 3. Preparing for Implementing a DNS-Based DevOps Approach
	Selecting a DNS Provider
	Performance
	Dynamic Control

	Implementing a Monitoring Solution
	RUM and EUM
	APM
	IPM

	Takeaways

	Chapter 4. Managing DNS in a DevOps Culture
	Traditional DNS Management
	Remove the Fear of DNS Changes
	DNS as Code
	Takeaways

	Chapter 5. Using DNS in Your DevOps Approach
	Use DNS to Streamline Deployment Pipelines
	Blue/Green Deployment
	Staged Rollout

	Use DNS to Maximize Availability
	DNS as a Load Balancer Replacement
	Integration with Monitoring and Alerting

	Mitigating Performance Degradations
	Infrastructure-Level Performance Issues
	Network-Level Performance Issues
	Geographic Performance Issues

	DNS as a Means of Cost Reduction
	DNS as a Means of Service Discovery
	Takeaways

	Chapter 6. DNS and DevOps: A Real-World Example
	Operations Culture at Intechnica
	DNS as a Means of Distribution
	DNS as a Means of Deployment
	DNS as a Means of Optimizing Availability
	DNS as a Means of Managing Failure
	Takeaways

	Chapter 7. Conclusion
	About the Authors

